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Abstract

We are motivated by the problem of building agents that interact in complex real-world
domains, such as UNIX and the Internet. Such agents must be able to exploit complete in-
formation when possible, yet cope with incomplete information when necessary. They need to
distinguish actions that return information from those that change the world, and know when
each type of action is appropriate. They must also be able to plan to obtain information needed
for further planning. They should be able to represent and exploit the richness of their domains,
including universally quanti�ed causal (e.g., UNIX chmod *) and observational (e.g., ls) e�ects,
which are ubiquitous in real-world domains such as the Internet.

The xii planner solves the problems listed above by extending classical planner represen-
tations and algorithms to deal with incomplete information. xii represents and reasons about
local closed world information, information preconditions and postconditions and universally
quanti�ed observational e�ects. Additionally, it interleaves planning with execution and han-
dles universally quanti�ed preconditions in the presence of incomplete information. We present
xiil(the xii action language) and the xii planning algorithm, which are the major contributions
of this paper.
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1 Introduction

Classical planners such as nonlin [45], tweak [5], or ucpop [38, 47] presuppose correct and

complete information about the world. Having complete information facilitates planning since the

planning agent need not obtain information from the external world | all relevant information is

present in the agent's world model (this is the infamous closed world assumption [42]). However,

in many cases, an agent does not have complete information about its world. For instance, a robot

may not know the size of a bolt or the location of an essential tool [35]. Similarly, a software agent,

such as the Internet Softbot [15] cannot be familiar with the contents of all the bulletin boards,

FTP sites, and �les accessible through the Internet.1 An agent might have incomplete information

about the world state, its own actions, or exogenous events (e.g., the actions of other agents). We

focus on incomplete but correct information about the world state.

This departure from classical planning raises a number of fundamental questions concerning

representational abilities and planning algorithms:

� How should one represent actions whose primary function is to obtain information rather

than to change the world's state (e.g. sense-color or the UNIX command ls)? What

about goals of obtaining information? (e.g., \where is my wrench?" or \do I own a �le called

core-dump?") Are \information goals" di�erent from the standard goals used in classical

planning?

Section 2 of this paper answers these questions by introducing an expressive language for rep-

resenting causal and sensing actions as well as goals that combine information-gathering aspects

with state-attainment. We demonstrate the expressive power of this representation language with

examples from the UNIX domain.

� How does the presence of incomplete information impact planning algorithms? Can a planner

satisfy universally quanti�ed goals in the absence of complete information? Goals of the form

\Move all bolts into the drawer" or \Make all �les in /tex write-protected" are common

in real-world domains. Classical planners such as prodigy [31] or ucpop [38] reduce a

universally quanti�ed goal to the set of ground instances of the goal, and satisfy each instance

in turn. But how can a planner compute this set in the absence of complete information?

How can the planner be certain that it has moved all the bolts or protected all the relevant

�les?

Section 3 of this paper describes the fully-implemented xii planner which explicitly represents and

reasons about information goals, sensory actions, and incomplete information about the world's

state. xii uses a variety of techniques to handle universally quanti�ed goals in the presence of

incomplete information.

� What is the right balance between planning an execution? Planning for all contingencies

may involve much extra work, but interleaving planning with execution forces the planner to

adjust to a dynamically changing information state.

1Because our work is motivated by the Softbot, most of our examples are drawn from software domains. However,

we emphasize that our results are general and corresponding examples are easily found in physical domains as well.
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Section 4 explains a how the choice to execute an action can be treated as a search problem, and

describes how to backtrack over the decision to execute.

While xii addresses a number of issues related to incomplete information, there are many

issues that it does not address { including noisy sensors, continuous change, and more. These are

important issues, which we ignore in our focus on incomplete information. Fortunately, this focus

doesn't restrict us to working on toy problems. xii is operational in a real world domain where

we can demonstrate its capabilities with concrete examples and assess its limitations. xii is at the

core of Internet Softbot. The Softbot is a software agent that uses a Unix shell and the World

Wide Web to interact with a wide range of Internet facilities. The inputs to the Softbot include

action models of commands such as ftp, telnet, mail and information gathering commands such

as archie, gopher, netfind, and many more. The Softbot relies on xii to dynamically generate

plans, or sequences of these commands, to satisfy user goals. xii not only generates the commands,

but also executes them, backtracking from one facility to another based on information collected

at runtime.

Our focus on the Internet domain enables us to buy out of some questions, but forces us to

address others. For example, sensors in the Internet domain are relatively noise-free; thus, we do

not concern ourselves with that issue. However, redundant sensing is an extremely important issue,

and so we have developed a solution to this problem [13, 12].

xii is an extension of ucpop [38, 3], a partial-order planner that handles universal quanti�cation

and conditional e�ects. In addition to the expressiveness of ucpop, xii supports the uwl [14]

language for representing sensory actions and information goals. The combined action language,

xiil, is described in Section 2. Section 3 describes the partial-order planning algorithm used by xii,

while Sections 3.3 and 3.4 detail our extensions relating to handling open goals and resolving threats.

Section 4 describes how we interleaving planning with execution. In Section 5, we summarize our

results and discuss related work. Appendices A and B present our representation and algorithms

in more detail.

2 Representing Sensing Actions & Information-Gathering Goals

In real-world domains, it is impossible to have complete information about the entire world. For

example, the Internet is just too vast for a Softbot to know everything out there, and even if it

did, there would be no way to keep up to date. This presents the twin challenges of representing

incomplete information about the world, and representing the actions required to obtain more

information.

We present an action representation language, xiil, that confronts both of these challenges. To

represent incomplete information, xiil supports an explicit notion of a proposition's state being

unknown. It also supports a limited form of circumscription, called Local Closed World information

(see Section 2.1) for circumstances in which limited instances of complete information are available.

To represent the combination of sensing and causation, xiil uses annotations to distinguish causal

e�ects from observational e�ects and goals of information from goals of satisfaction. It also explicitly

represents information that is unknown at plan time but will be provided at run time by sensing

actions (see Section 2.2).

xiil melds elements of both adl [37] and uwl [14]. adl gives us logical expressiveness in-

cluding universal quanti�cation, conditional e�ects, disjunction and negation. uwl provides a

means of representing information goals and information-gathering actions. As explained below,
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the combination is synergistic; for example, universally quanti�ed observational actions can return

an unbounded amount of information.

xiil adopts a three valued logic: propositions can be either true T, false F, or \unknown" U. Any

proposition that cannot be inferred to be T or F, defaults to U. However, it is sometimes possible to

infer that a ground literal is false, even when neither it nor it's negation appears explicitly in the

agent's model (See Section 2.1).

The xiil language allows one to describe partially speci�ed action schemata (also known as

operators) in terms of parameters, preconditions and e�ects. Appendix A provides a complete

speci�cation of the language. Note that nested universal and existential quanti�cation is allowed

(with some restrictions) in both the e�ects and preconditions of schemata and in goals. Conditional

e�ects and disjunctive goals are also supported, since algorithms for planning with these constructs

have become well understood [47].

2.1 Local Closed World Information

Our agent's model of the world is represented as a set of ground literals stored in a database DM.

Since DM is incomplete, the closed world assumption is invalid | the agent cannot automatically

infer that any sentence absent from DM is false. Thus, the agent is forced to represent false facts

explicitly | as DM sentences with the truth value F.

In practice, many sensing actions return exhaustive information which warrants limited or

\local" closed world information. For example, the UNIX ls -a command lists all �les in a given

directory. After executing ls -a, in directory mydir, it is not enough for the agent to record that

paper.tex and proofs.tex are in mydir because, in addition, the agent knows that no other �les

are in that directory. Note that the agent is not making a closed world assumption. Rather, the

agent has executed an action that yields closed world information.

Although the agent now knows that parent.dir(foo, mydir) is false, it is impractical for the

agent to store this information explicitly in DM, since there is an in�nite number of such sentences.

Instead, the agent represents closed world information explicitly in a meta-level database, DC,

containing formulas of the form LCW(�) that record where the agent has closed world information.

LCW(�) means that for all variable substitutions �, if the ground sentence �� is true in the world

then �� is represented in DM. For instance, we represent the fact that DM contains all the �les

in mydir with LCW(parent.dir(f,mydir)) and that it contains the length of all such �les with

LCW(parent.dir(f,mydir)^length(f,l)).

When asked whether an atomic sentence � is true, the agent �rst checks to see if � is in DM.

If it is, then the agent returns the truth value (T or F) associated with the sentence. However, if

� 62 DM then � could be either F or U (unknown). To resolve this ambiguity, the agent checks

whether DC entails LCW(�). If so, � is F, otherwise it is U.

2.2 Observational E�ects

We divide the primitive e�ects of action schemata into those that change the world (annotated by

cause), and those that merely change the agent's model of the world (annotated by observe).

Causational e�ects should be familiar to most readers since classical planners (such as tweak)

have only this type of e�ect. In xii, we assume that if execution of an action causes P to become
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true,2 then the agent knows this fact. However, cause e�ects can also result in information loss.

For instance, compressing a �le, makes the length of the �le unknown: cause (length (f, l), U).

Observational postconditions come in two forms, corresponding to the two ways the planner can

gather information about the world at run time. One, it can observe the truth value of a proposition,

observe (P (c), !tv). For example, the e�ect of ping, the UNIX command for checking whether a

machine is accessible, is represented as follows:

observe (machine.alive (machine), !tv)

A symbol starting with an exclamation point, such as !tv, is a run-time variable, used to refer to

a piece of information that will determined by executing the action and returned to the agent by the

execution system at that time. Variables that are not run-time variables are referred to as plan-time

variables. The other form of observational e�ect identi�es an object that has a particular property:

observe (P (!val)). For example, the e�ects of the UNIX command wc are represented as follows:

observe (character.count (�le, !char)) ^

observe (word.count (�le, !word)) ^

observe (line.count (�le, !line))

Some actions are best modeled with universally quanti�ed e�ects. For example, chmod +r *

adds read permission to all �les in the current directory; supposing that d is bound to the current

directory, then the e�ect can be encoded in xiil as:

8 (file (f) 2 parent.directory (f, d))

cause (readable (f))

The notation provides a convenient way to specify a universe of discourse (i.e., the set of

objects being quanti�ed over [17, p. 10]) based on the extension of a predicate in the world.

For example, parent.directory (f, /bin) means the set of �les actually in directory /bin. The

universe of discourse may be speci�ed by a conjunction of predicates, but disjunction is not allowed.

Section 3.3.5 explains how an agent can reason about the e�ects of universally quanti�ed xiil

actions, even when it doesn't know the extension of the universe of discourse.

By nesting universal and existential quanti�ers, xiil can model powerful sensory actions that

provide several pieces of information about an unbounded number of objects. For example, ls -a

reports several facts about each �le in the current directory:

8 (file (!f) 2 parent.directory (!f, d))

9 (path (!p) name (!n))

observe (parent.directory (!f, d)) ^

observe (pathname (!f, !p)) ^

observe (filename (!f, !n))

The universal quanti�er indicates that, at execution time, information will be provided about all

�les !f whose parent directory is d. Since the value of !f is observed, quanti�cation uses a run-time

variable. The existential quanti�er denotes that each �le has a distinct �lename and pathname.

2Since it is extremely common for an e�ect to make an atomic sentence (p x) true, we often abbreviate cause

(p (a), T) by simply writing cause (p (a)). Observations with T truth values can be abbreviated similarly.
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2.3 Knowledge Preconditions

Just as xiil distinguishes between causal and observational e�ects, the language allows both goals

of achievement (annotated with satisfy) and information goals (annotated with �nd-out). For

example, the goal of determining the length of paper.tex, could be expressed as:

9 (number (l))

�nd-out (length (paper.tex, l))

For convenience, we often drop the explicit existential quanti�cation on variables such as l in

the above example. Thus, free variables are implicitly existentially quanti�ed. As an example of

a universally quanti�ed information goal, consider the task of verifying that all the �les in the

directory /bin are read protected.

8 (file (f) 2 parent.directory (f, /bin))

�nd-out (readable (f), F)))

Note the di�erence between this information goal and the (corresponding) achievement goal of

making all �les in /bin read-protected:

8 (file (f) 2 (parent.directory f /bin))

satisfy (readable (f) F)

Thanks to the formalization of the Modal Truth Criterion [5] and Causality Theorem [36], the

semantics of satisfy goals are well understood. In essence, a sequence of actions achieves the goal,

satisfy('), if two conditions are met:

1. one of the actions in the sequence has an e�ect that causes ' to be true or observes ' to

be true or if ' is true in the initial state, and

2. all subsequent actions leave ' unchanged.

This de�nition is not su�cient to handle information goals. Consider, for example, the goal

�nd-out (readable (secret.tex), tv). Clearly, an action sequence that uses chmod to make

the �le readable, and answers \Yes, secret.tex is readable" does not satisfy the intent of the

information goal. An information goal expresses the desire to �nd out whether a proposition is

true, not the desire to make it so.

The goal \�nd and delete the �le called core-dump" illustrates this point more dramatically.

Clearly, renaming the �le paper.ps to core-dump and deleting it does not satisfy this goal | it

merely obscures the identity of the appropriate �le. In general, if a planner is given a de�nite

description that is intended to identify a particular object, then changing the world so that another

object meets that description is a mistake. The appropriate behavior is to scan the world, leaving

the relevant properties of the objects unchanged until the desired object is found.

The above examples raise a fundamental question: what is intended by a �nd-out goal? We

consider a number of possibilities below.
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� �nd-out is exactly analogous to satisfy except that instead of either causing or observing

' we only allow observe e�ects. The problem with this semantics for �nd-out is that

there is no assurance that ' was not changed before its truth value was observed, which is

inappropriate as the core-dump example illustrates. For example, a plan that included the

action sequence mv paper.ps core-dump, ls core-dump, rm core-dump would satisfy our

goal, according to this de�nition of �nd-out.

� The core-dump example suggests that we are interested in the truth value of ' in the planner's

start state. This de�nition would enable the planner to pick out the right �le. However, when

the planner turns to delete that �le, there is no guarantee that �le in question still has the same

name. So that executing the command rm core-dump may not have the desired a�ect. E.g.

the action sequence ls core-dump, mv paper.ps core-dump, rm core-dump would satisfy

the goal.

� Clearly, when attempting to satisfy an informational goal, an agent must be careful not to

cause some change that could interfere with the answer. This leads to our de�nition that a

sequence of actions achieves the goal, �nd-out('), if the following conditions are met:

1. one of the actions in the sequence has an e�ect that observes ' to be true, or ' is

known to be true in the initial state, and

2. none of the actions in the entire sequence has a cause e�ect which uni�es with '.

In summary, there are two di�erences between the criteria for satisfaction of satisfy and

�nd-out goals. First, the former can be satis�ed by cause or observe e�ects while the latter

are limited to observe e�ects. Second, �nd-out goals require that ' remain unchanged by every

action, not just those after the establishing action [5].

When one speci�es a �nd-out goal, a period of time elapses (during which the agent may plan

and execute actions) before the agent returns the answer. Since the �nd-out annotation has no

explicit temporal argument, it is ambiguous which instant the 
uent is being sampled: Does the

answer returned by the agent refer to the value of the 
uent when the question is asked or at the

time that the answer is returned? In fact neither of these points provides the desired e�ect for all

goals, so we de�ne a �nd-out goal to be satis�ed only when the answer is correct (i.e., the 
uent

doesn't change value) for both time points and all those in between.

By incorporating an explicit temporal annotation, one could de�ne a more general notion of an

information goal that demands the value of a particular 
uent over some arbitrary interval. Such

goals would �t nicely in the framework of the ilp [1] or zeno [39] planners, since they support

temporally quanti�ed goals. Unfortunately, at present these planners seem too ine�cient for our

needs. For tractability, xii's language does not contain complex temporal primitives, so our ability

to specify temporal intervals is severely limited.

In addition, xiil does not allow one to pose some types of information goals [33, 6]. For example,

one can not ask \Does paper.tex have a length?" In principle, one might express this goal as

�nd-out (9 (number (l)) length paper.tex (l)), however this isn't legal xiil since satisfy

and �nd-out annotations only apply to primitive (literal) goals (See Table 1). This restriction

facilitates planning considerably (Section 3.3), and since queries of this form rarely come up in

practical examples, we consider the tradeo� reasonable. Finally, note that although our examples

have been purely conjunctive, xiil allows disjunction, negation, and nested quanti�cation over
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operator LS (directory (d))

precond: satisfy(current.shell(csh)) ^

satisfy(protection(d, readable))

effect: 8 (file (!f) 2 parent.directory (!f, d))

9 (path (!p), name (!n))

observe(parent.directory(!f, d)) ^

observe(pathname(!f, !p)) ^

observe(filename(!f, !n))

execute: execute-unix-command ("ls -a " d)

sense: f!f, !n, !pg := ls-sense(d)

Figure 1: UNIX action schema. The xii LS action lists all �les in the current directory. The

last two lines specify the information needed to interface to UNIX. The �rst of these says to output

the string \ls -a" to the UNIX shell. The second says to use the function ls-sense to translate

the output of the shell into a set of bindings for the run-time variables !f, !n and !p.

primitive �nd-out and satisfy goals. The semantics of complex goal satisfaction is de�ned in

terms of the primitives in the same manner as for adl [36].

3 Planning in the Face of Incomplete Information

We have described the legal goals and action schemata of xiil, but we have not yet discussed how

to generate plans for this language or how to relax the assumptions made by classical planners.

Here we discuss how xii represents plans, and how it builds upon classical planning algorithms.

For a complete description of the xii algorithm, refer to Appendix B.

xii is an extension of ucpop, a classical partial-order planner that handles universal quanti�-

cation and conditional e�ects. Like all classical planners, ucpop builds plans in isolation, relying

on the CWA to circumvent the problem of sensing. To address these inadequacies in the planning

algorithm, we extended it to cope with incomplete information, use LCW knowledge, and interleave

planning with execution.

As described in [47], a classical planner takes as input a description of the world w, a description

of a goal G, and a theory of action D, and produces as output a sequence of actions which, when

executed in order from state w, brings the world into some state satisfying G. Traditionally, w is a

complete speci�cation of the initial world state, consisting of a list of all literals true in the world,

interpreted using the CWA. Planning with incomplete information means the exact initial state

of the world may be unknown, so instead of a complete description of the world, w is a partial

description, using the three-valued logic and LCW representation discussed in Section 2.

3.1 Representing Partially-Executed Plans

Planning can be regarded as a search through a space of partially-speci�ed plans, for a complete

plan that achieves the goal. An xii plan consists of a tuple hA;O;B;L; Ei, where A is of a set of

actions, O is a partial temporal ordering relation over the actions, B is an equivalence relation over
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the variables and constants in the plan, L is a set of causal links [45] and E is a function mapping

each action to its execution status.

� O consists of two ordering relations: The intransitive successor relation j and the transitive

closure of j, �. AajAb means that in any total ordering of actions At, if At[i] = Aa then

At[i+1] = Ab. � is the customary ordering relation used by partial-order planners. Aa � Ab

means that in any total ordering of actions At, if At[i] = a then At[i + k] = b, for some

k � 1. The ordering of actions corresponds to the temporal order in which they are executed.

The reason for the relation j is that actions are executed during planning, which represents

a stronger commitment to order than � alone can express. That is, any executed action is

necessarily before all unexecuted actions, including actions that haven't been added to the

plan yet. We say that O is consistent if there is some permutation of A that doesn't violate

any of the ordering constraints imposed by O.

� B consists of two binding relations: The codesignation relation =, and the non-codesignation

relation 6=; by de�nition, if a and b are constants, a 6= b. B is consistent if there is some

assignment of constants to variables that obeys all of these constraints.

� A causal link Ap
q
!Ac records the planner's decision to support precondition q of action Ac

with an e�ect of action Ap. Ac is known as the consumer of q and Ap is known as the producer

of q. Once the causal link is added, condition q is removed from the goal agenda, and the

planner is committed to ensure that condition q remains true from the time Ap is executed

until the time that Ac is executed. An action At that could possibly be executed during this

interval and might make q false is said to threaten the link, and the planner must make take

evasive action | for example, by ensuring that At is executed after Ac.

� E in the simplest case maps each action in the plan to executed or unexecuted, though

other values, such as executing can be used to give a �ner level of information of the status

of actions. Knowing that a action is executing is useful when executing multiple actions

simultaneously, for example to handle resource con
icts [22]. By de�nition, E(A0) is always

executed, and when E(A
1
) = executed, planning is complete.

3.2 Searching through Plan-Space

Generative planning can be viewed as a process of gradually re�ning a partially-speci�ed plan,

until it is transformed into a complete plan that solves the goal. The initial plan consists of two

\dummy" actions A0 and A
1
. A0 has no preconditions, and encodes the initial state as its e�ect.

A
1

has no e�ects, but encodes the goal as its precondition. Using this representation simpli�es

the algorithm, since the same code used to reason about preconditions and e�ects of actions can

be used to reason about goals and initial conditions.

The xii algorithm takes three arguments: a plan p, a goal agenda G, and a theory of action

D. When xii is �rst invoked, p is the dummy plan, described above, and G contains the top-level

goal, speci�ed as a precondition of action A
1
. As conditions are satis�ed, they are removed from

G, and when actions are added to the plan, preconditions of those actions are added to G.

We refer to the aspects of the plan that need to be changed before the plan can be complete

as 
aws, and the changes made as �xes. In traditional least-commitment planners, the 
aws to

consider are open goals on the goal agenda, and threats to causal links. In order to interleave
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planning and execution in this framework, we treat an unexecuted action as another type of 
aw,

whose �x is to execute it (Section 4). Treating execution in this manner has some profound impacts

on the search algorithm, as we will discuss in depth in Section 4. Once no more 
aws exist, the

plan is complete (and fully executed), and the goal is achieved.

In general, there will be more than one �x for a given 
aw, and for completeness, all �xes must

be considered. Considering all �xes requires search, but we can view the algorithm in terms of

nondeterministic choice by assuming that for each 
aw, xii miraculously chooses the correct �x.

Using nondeterminism simpli�es the algorithm description, and allows us to separate the details of

the planner from the details of the search strategy.

In the rest of the paper, we elaborate on some novel elements of the xii search space. Sections

3.3 and 3.4 discuss how xii handles the 
aws of open preconditions and threats respectively.

3.3 Handling Open Goals

An open goal in xii can be any arbitrary goal expression in the xiil language, including disjunction,

conjunction, and nested quanti�cation. To cope with this complexity, xii breaks the goals apart

into simpler goals using a divide-and-conquer strategy.

3.3.1 Canonical Form

The key to this divide-and conquer strategy is a preprocessing step that converts all preconditions

and e�ects into a canonical form similar to clause form. With the exception of LCW conditions

(see Section 3.3.6), all preconditions and postconditions are converted into a uniform representation

in which the atomic elements are free of conjunction and disjunction, but may involve universal

quanti�cation. Each atomic element is a literal in the xiil language consisting of an annotation

such as �nd-out or cause, a truth value of T, F, U or a variable, and a condition, consisting of

a predicate with its arguments, any of which may be a universally quanti�ed variable. We will

call these atomic elements alits for annotated literals. Matching is done between alits using simple

uni�cation.

Existentials are replaced with Skolem functions. The scope of universal quanti�ers becomes

global and the scope of negation is restricted to individual literals. For conditional e�ects, the

scope of the precondition is also restricted to individual literals. The e�ect of this conversion is

that all expressions consist of alits, possibly with preconditions, connected by ^ and _. Since

disjunction is not allowed in e�ects, all e�ects become conjunctions of alits, which are conceptually

equivalent to STRIPS add and delete lists. The conjunction and disjunction in preconditions are

handled within the planning algorithm, where conjuncts are added as separate elements to the goal

agenda G, and a disjunction is treated as a nondeterministic choice. The result is that atomic goals

on G are alits, and these are satis�ed by alits on the add/delete list.

3.3.2 Atomic Goals

An atomic goal is a goal which is free of conjunction and disjunction. It may, however, involve

universal quanti�cation. We explain how universally quanti�ed goals are handled in Section 3.3.5.

Atomic goals can be satis�ed by one of two means: adding a new action or committing to use

the e�ect of an action already in the plan to support the goal. In the latter case, if the action

supporting the goal is A0, then the precondition is already satis�ed, and we are simply adding
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constraints to ensure that it remains satis�ed. In xii, the contents of the world model, and hence

the e�ects of A0, can change during planning, so some care is needed when adding causal links

from A0, as we will discuss in Section 4.2.

The question still remains, how to tell whether an e�ect satis�es an atomic goal. But since

both e�ects and atomic goals are alits, Determining whether an e�ect satis�es a goal reduces to

the problem of matching two alits.

3.3.3 Matching

Matching between atomic preconditions and postconditions is fairly simple. The precondition of

a conditional e�ect is not considered when matching, so we need only match between alits, which

consist of annotation, literal and truth value. The annotations are consistent as long as whenever

the annotation of the goal is �nd-out, the annotation of the e�ect is observe.3 Matching between

literals and between truth values is done by uni�cation.

In the course of unifying two variables, ve from an e�ect, with vg from a goal, we must consider

the case in which one or both of them are universally quanti�ed. Since a universally quanti�ed

goal can never be satis�ed by an existentially quanti�ed e�ect, there are only two cases we need to

consider:

� When both variables are universally quanti�ed, we force the two variables to codesignate, and

then perform a conjunctive match on their respective universes of discourse. If the universe

of ve subsumes the universe of vg, then the match succeeds.

� When only ve is universally quanti�ed, vg is recorded as a member of the set de�ned by the

universe of ve, but the variables do not codesignate, since a 8 variable is free to match any

number of 9 variables, and the 9 variable is still free to match other 9 variables or constants.

We introduce the function MGU(e, p), which returns the most general uni�er, of e and p,

meaning the minimal variable bindings to ensure that e and p will unify. If e and p can't unify,

MGU(e, p) returns ?.

3.3.4 Updating the Plan

When choosing to support preconditions p of action Ap with e�ect e of action Ae, xii must remove

p from the goal agenda and add constraints to ensure that p will continue to be supported until Ap

is executed. There are four such constraints:

1. Add bindings returned by MGU(e, p) to B.

2. Add the ordering constraint Ae � Ap to O.

3. Add a causal link Ae
p
!Ap to L.

4. Add preconditions of action Ae and any preconditions of e�ect e to G.

3The other requirement for �nd-out goals, that no other e�ect in the plan cause the literal in question to change,

can be detected during threat resolution (see Section 3.4).
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3.3.5 Universally Quanti�ed Goals

The e�ects of many UNIX commands are not easily expressed without 8. The ubiquitous * UNIX

wildcard can make almost any command universally quanti�ed, and many other commands, such

as ls, ps, lpq, and rm have 8 e�ects.

However, the approach used by planners like ucpop and prodigy to solve 8 goals depends

on the CWA, which presents a challenge for xii. Traditionally, planners that have dealt with

goals of the form \Forall v such that q(v) make �(v) true" have done so by expanding the goal

into a universally-ground, conjunctive goal called the universal base [47]. The universal base of

such a formula equals the conjunction �1 ^ : : : ^�n in which the �is correspond to each possible

interpretation of �(v) under the universe of discourse, fC1; : : : ; Cng, i.e. the possible objects x

satisfying q(x) [17, p. 10]. In each �i, all references to v have been replaced with the constant Ci.

For example, suppose that pf(x) denotes the proposition that object x is a �le in the directory

/papers and that there are two such �les: C1 = a.dvi and C2 = b.dvi. Then the universal base

of \Forall f such that pf(f) make printed(f) true" is printed(a.dvi) ^ printed(b.dvi).

A classical planner can satisfy 8 goals by subgoaling to achieve the universal base, but this

strategy relies on the closed world assumption. Only by assuming that all members of the universe

of discourse are known (i.e., represented in the model) can one be con�dent that the universal base

is equivalent to the 8 goal. Since the presence of incomplete information invalidates the closed

world assumption, the xii planner uses two new mechanisms for satisfying 8 goals:

1. Sometimes it is possible to directly support a 8 goal with a 8 e�ect, without expanding the

universal base. For example, given the goal of having all �les in a directory group readable,

xii can simply execute chmod g+r *; it doesn't need to know which �les (if any) are in the

directory. Because uni�cation between 8 variables is handled during matching, as we discussed

in Section 3.3.3, supporting a 8 goal with a 8 e�ect is just a special case of supporting an

atomic goal with an e�ect from a new or existing action (Note that since universally quanti�ed

e�ects cannot appear in the agent's world model, supporting a 8 goal directly with e�ects of

A0 is not an option). The only di�erence in the case of 8 goals is that matching is between

universally quanti�ed expressions, and the causal link is labeled with a universally quanti�ed

expression. If the e�ect is conditional, and the precondition involves a 8 variable, then a

universally quanti�ed precondition is added to the goal agenda.4

2. Alternatively, xii can subgoal on obtaining LCW on the universe �i of each universal variable

vi in the goal. Once xii has LCW(�i), the universe of discourse for vi is completely represented

in its world model. At this point xii generates the universal base and subgoals on achieving

it. Note that this strategy di�ers from the classical case since it involves interleaved planning

and execution. Given the goal of printing all �les in /papers, xii would plan and execute an

ls -a command, then plan to print each �le it found, and �nally execute that plan.

In case neither mechanism alone is su�cient, xii also considers combinations of these mecha-

nisms to solve a single 8 goal, via a technique called partitioning. 5

4Note that if a conditional 8 e�ect were used to satisfy an 9 goal then the precondition would not be universally

quanti�ed. For example, compress * compresses all �les in the current directory that are writable. If compress * is

used to ful�ll the goal of compressing all �les in the directory, then all the �les must all be writable, but if the goal

is merely to compress a single �le, then it is su�cient for that �le alone to be writable.
5Note also that the classical universal base mechanism requires that a universe be static and �nite. xii correctly
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3.3.6 LCW Goals

As we mentioned, one way of solving universally quanti�ed goals is to �rst obtain LCW on the

universe of discourse. But how is that to be accomplished? What we do is post the desired LCW

formula to the goal agenda G, and then re-evaluate the 8 goal once the LCW goal has been achieved.

As with standard goals, LCW goals can be satis�ed by adding a link from a new or existing action

or linking from A0 (i.e. using LCW information stored in the database DM).

LCW goals can also be handled by two other techniques, known as Intersection Cover and

Enumeration. These techniques correspond directly to the Conjunction and Composition rules

described in [12]. Both techniques can be easily understood by thinking of LCW formulae in terms of

sets. The conjunction of two LCW formulae, � and 	 can be thought of as representing knowledge

about the intersection of the sets described by � and 	. For example, if � is parent.dir(f,

/bin) and 	 is postscript(f), then LCW(�) represents knowledge of all �les in /bin, LCW(	)

represents knowledge of all postscript �les, and LCW(�^	) represents knowledge of all postscript

�les in /bin, the intersection of the two sets.

One way of identifying all members �^	 would be to �rst identify all members of �, and then

for each member, determine whether it is also a member of 	. We call this approach Enumeration,

because it relies on enumerating elements of 	. A goal LCW(�^	) can be solved by �rst obtaining

LCW(�), and then for each ground instance �i of �, subgoal on LCW(	�), where � is the variable

substitution returned by MGU(�i, �). For example, to �nd all postscript �les in bin, one could �rst

�nd out all �les in bin and then for each �le in that directory, �nd whether the �le is postscript.

It may be costly to enumerate all members of the extension of � if that set is large. Or it may

be the case that � and 	 have no variables in common, in which case enumeration of 	 is pointless.

Another alternative is to realize that if one knows the members of both sets, then one knows their

intersection, so a goal LCW(� ^ 	) can be achieved by subgoaling on LCW(�) ^ LCW(	). For

example, one way of �nding out all postscript �les in bin is to �nd out all �les in bin and �nd out

all postscript �les. We call this approach Intersection Cover.

3.4 Resolving Threats

We have said that the purpose of a causal link Ap
q
!Ac is to protect condition q from being violated

during the interval between the execution of Ap and the execution of Aq. How exactly does xii

prevent condition q from being violated? We could just view the causal link as a constraint,

and reject plans that have inconsistent constraints, but that would require doing costly constraint

satisfaction for every partial plan the planner considers. We instead take a more proactive approach,

by adding new constraints to the plan whenever a causal link is potentially violated, to ensure that

it is not violated. See [20] for an excellent discussion of the various tradeo�s involved.

When the condition is potentially violated, but could be saved, this is referred to as a threat to

the link, and the planner must take evasive action to avoid the threat. The three standard threat

avoidance mechanisms are promotion, demotion, and confrontation. Promotion and demotion order

the threatening action before the link's producer or after its consumer, respectively. Confrontation

works when the threatening e�ect is conditional; the link is protected by subgoaling on the negation

of the threat's antecedent [38]. For ordinary causal links, xii uses these standard techniques for

handles dynamic universes, using the approach of [47]. Furthermore, xii's policy of linking to 8 e�ects handles in�nite

universes, but this is not of practical import.
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resolving threats. But xii has other kinds of causal links, for which the standard techniques are

insu�cient.

3.4.1 Threats to Forall Links

8 links can be handled using the same techniques used to resolve ordinary threats: demotion,

promotion, and confrontation. Additionally, the following rule applies.

� Protect forall: Given a link Ap
G
!Ac in whichG = 8x 2 q1(x) S(x) and q1(x) equals P1(x)^

P2(x)^: : :^Pn(x) and a threat At with e�ect P1(foo), subgoal on achieving S(foo)_:P2(foo)_

: : : _ :Pn(foo) by the time Ac is executed.

For example, suppose a 8 link recording the condition that all �les in mydir be group readable

is threatened by action At, which creates a new �le, new.tex. This threat can be handled by

subgoaling to ensure that new.tex is either group readable or not in directory mydir.

3.4.2 Threats to LCW

The other way to satisfy a 8 goal is to subgoal on obtaining LCW, and then add the universal base

to G. However, since LCW goals can also get clobbered by subgoal interactions, xii has to ensure

that actions introduced for sibling goals don't cause the agent to lose LCW. For example, given the

goal of �nding the lengths all �les in /papers, xii might execute ls -la. But if it then compresses

a �le in /papers, it no longer has LCW on all the lengths.

To avoid these interactions, we use LCW links, which are like standard causal links except that

they are labeled with a conjunctive LCW formula. Since LCW(P(x) ^ Q(x)) asserts knowledge of P

and Q over all the members of the set fx j P(x) ^ Q(x)g, an LCW link is threatened when information

about a member of the set is possibly lost or a new member, for which the required information

may be unknown, is possibly added to the set. We refer to these two cases as information loss and

domain growth, respectively, and discuss them at length below. Like threats to ordinary causal

links, threats to LCW links can be handled using demotion, promotion, and confrontation. In

addition, threats due to information loss can be resolved with a new technique called shrinking,

while domain-growth threats can be defused either by shrinking or by a method called enlarging.

Information Loss We say that At threatens Ap
G
!Ac with information loss ifG = LCW(P1 ^ : : : ^ Pn),

At possibly comes between Ap and Ac, and At contains an e�ect that makes R unknown, for some

R that uni�es with some Pi in G. For example, suppose xii's plan has a link Ap
H
!Ac in which

H = LCW(parent.dir(f,/papers)^length(f; n))

indicating that the link is protecting the subgoal of knowing the lengths of all the �les in directory

/papers. If xii now adds the action compress myfile.txt, then the new action threatens the

link, since compress has the e�ect of making the length of myfile.txt unknown.

� Shrinking LCW: Given a link with condition LCW(P1(x) ^ P2(x) ^ : : : ^ Pn(x)) and threat

causing P1(foo) to be unknown (or true), xii can protect the link by subgoaling to achieve
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:P2(foo) _ : : : _ :Pn(foo)
6 at the time that the link's consumer is executed. For example,

compressing myfile.txt threatens the link Ap
H
!Ac described above, because if myfile.txt

is in directory /papers, then the lengths of all the �les in /papers are no longer known.

However, if parent.dir(myfile.txt,/papers) is false then the threat goes away.

Domain Growth We say that At threatens Ap
G
!Ac with domain growth if G = LCW(P1^: : :^Pn),

At possibly comes between Ap and Ac, and At contains an e�ect that makes R true, for some R

that uni�es with some Pi. For the example above in which the link Ap
H
!Ac protects LCW on the

length of every �le in /papers, addition of an action which moved a new �le into /papers would

result in a domain-growth threat, since the agent might not know the length of the new �le. Such

threats can be resolved by the following.

� Shrinking LCW (described above): If xii has LCW on the lengths of all postscript �les in

mydir, then moving a �le into mydir threatens LCW. However, if the �le isn't a postscript

�le, LCW is not lost.

� Enlarging LCW: Given a link with condition LCW(P1(x) ^ P2(x) ^ : : : ^ Pn(x)) and threat

causing P1(foo) to be true, xii can protect the link by subgoaling to achieve LCW(P2(foo) ^

: : : ^ Pn(foo)) at the time that the link's consumer is executed. For example, moving a new

�le xii.tex into directory /papers threatens the link Ap
H
!Ac described above, because the

length of xii.tex may be unknown. The threat can be resolved by observing the length of

xii.tex.

Note that an e�ect which makes some Pi false does not pose a threat to the link! This corre-

sponds to an action that moves a �le out of /papers | it's not a problem because one still knows

the lengths of all the �les that remain.

4 Controlling Execution

As with other decisions made by the planner, we describe execution in terms of 
aws and �xes. For

a plan to be complete, all actions must be executed. Thus an unexecuted action is a 
aw in the

plan, whose �x is to execute it. An action cannot be executed until certain minimal criteria are

met.

� All its preconditions must be satis�ed, since otherwise the e�ects of the action are unde�ned.

� It must be consistent for the action to be ordered before all other unexecuted actions in the

plan, since any action ordered prior to it must be executed prior to it.

� The action must not be involved in any threats, since executing the action �xes its order in

the plan, thus eliminating from consideration threat resolution techniques that involve action

orderings.

6Note the di�erence between shrinking and protecting a 8 link. Unlike the 8 link case, shrinking does not have a

disjunct corresponding to S(foo).
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� Finally, the physical action being executed must be unambiguous. In particular, all plan-time

variables used as parameters to the command the agent is to execute must be bound before

the action can be executed. For example, a command such as \Put block A on block x",

where x is a variable, is obviously ambiguous, as is ls d.

While the action executed must be unambiguous, within certain bounds, the e�ects of the action

need not be unambiguous. For example, e�ects can have truth values of U, indicating that the literal

in question will change in some undetected manner, becoming unknown to the agent. For example,

executing compress bigfile changes the size of bigfile without notifying us (or the Softbot)

what the new size is. Thus the size becomes unknown. Another example of ambiguity is when a

8 e�ect like chmod u+w * is executed, but the universal base is unknown. Similarly, a conditional

e�ect could have an unknown precondition, assuming neither the e�ect nor its negation appears as

a precondition of a later action. In all these cases, the physical action itself is unambiguous (the

Softbot knows what to type into the shell), but the e�ects are not. Note that sensory actions are

not considered ambiguous, because the values of run-time variables (and hence the e�ects) will be

known immediately after execution.

In ucpop, the choice of what 
aw to work on is not a nondeterministic choice; goal ordering

and threat resolution in
uence e�ciency but not completeness. This is not the case for execution.

Because executing an action entails �xing its position in the plan, execution can restrict the number

of subsequent choices available. For this reason, execution is di�erent than other 
aws in that, for

completeness, the decision to execute an action must be a nondeterministic choice | that is, it

must be regarded by the planner as a choice point, to backtrack over as necessary.7 In the worst

case, this means that the planner will consider all possible orderings of actions, which is factorial

in the number of actions. There is a tradeo� here between completeness and e�ciency. In the

absence of irreversible actions, the decision to execute rarely a�ects completeness, and we have

found it acceptable to treat execution the way we treat other 
aws, despite the theoretical loss of

completeness.

Section 3 described execution as a planner choice point, but as the previous discussion illustrates,

there are clearly ways in which execution di�ers from choices such goal establishment and threat

resolution. We will now discuss what it means to execute an action in a partial plan, both at

an operational level, and how it a�ects the nature of the search space. We will then talk about

potential problems that execution raises, and ways those problems can be circumvented.

4.1 Representing Executable (and Executed) Actions

Execution of an action involves changes to the world, to the agent's model of the world, to the

current plan, and to the entire search space. The most obvious change is to the state of the world.

Hopefully, whatever causal e�ects are listed in the action description are now true in the world, and

everything else remains as it was. That may not be the case: Execution may simply fail. In general,

this is due to exogenous events that make a precondition false, or to unsatis�ed preconditions not

modeled by the domain theory. Examples of such preconditions are that the �le server must be

running for ls to succeed, and a robot's arm must not be broken if it is to pick up a tool.8 In

7An alternative to this approach, which also preserves completeness, but at the expense of a large (in our case

in�nite) branching factor is discussed in [21].
8Modeling such preconditions is pointless, since they are outside the ability of the agent to either control or reliably

detect. However, they bring home the point that quali�cation problem is alive and well in real-world domains.
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any event, if the desired e�ects have not been achieved, it is necessary to backtrack. Assuming the

action was successfully executed, the agent must process whatever information is returned by its

sensors and record the e�ects of the action in its world model.

In addition to changing the world and its model of the world, xii must change the current plan,

by marking the action as executed and adding new binding and ordering constraints. The run-time

variables in the e�ects must be bound to the values determined by the agent's sensors. In the case

of observational 8 e�ects, the number of binding constraints may be arbitrary. Since the ordering

constraints imposed on actions dictate relative order of execution, once an action Aexec has been

executed, we add a constraint, AprevjAexec, where and Aprev is the previous executed action, or

A0 if no other actions have been executed. This ensures that all unexecuted actions, including

actions not yet added to the plan, will follow Aexec. If executing the action reveals the values of a

8 variable, then even more profound changes to the plan may be required. For example, say the

plan contained the 9 goal of �nding some �le in directory papers and printing it, where �nding a

�le is to be achieved by ls. Once ls papers is executed, the agent discovers there are �ve �les

there. It now has a choice of printing one of those �ve �les, requiring a planner choice point. Thus

�ve new plans are generated, one for each �le in papers, and xii chooses one of them. Note that if

the goal had been to print all of the �les, there would be only one plan, with �ve new open goals,

one for each of the �les that must be printed. These �ve new goals constitute the universal base of

the original 8 goal (see Section 3.3.5).

In addition to the above changes to the world state, model, and the current plan, there may be

a changes to the search space itself. Once an action has been executed, other plans in the search

space will no longer be consistent with the state of the world and, to cope with this discrepancy,

some extra work may be required if these plans are ever visited. We refer to visiting such a plan

as backtracking over execution and discuss it in length below.

4.2 Backtracking Over Execution

Because plans are sometimes partially executed before they are fully worked out, it may happen

that actions are executed in the course of following a blind alley, and that these actions need to

be undone somehow to get back to the true path to the goal. This undoing of executed actions is

called physical backtracking.

If we want to support any search strategy, even BFS, it is necessary to be able to jump to any

plan in the fringe of the search tree, regardless of where it is relative to the current plan. This may

require not just backtracking, but forwardtracking as well: re-executing actions that were previously

executed but later undone. Conceptually, going from plan pa to plan pb entails backtracking from

pa to the common ancestor of pa and pb and then forwardtracking to pb.

A few things are important to note. First, when we interleave planning and execution, we are no

longer just searching through plan-space. We are simultaneously searching through the state-space

of the world. However, since we have incomplete information about the current state, we never know

exactly what state the world is in. Also, while the state of the world is changing, our incomplete

information about the world state is changing in response to the causal and observational e�ects we

execute. So while searching through world-state space, we are also searching through the space of

world models. It should be clear by this point that reliably returning the world to the exact state it

was in at some earlier time is, in the general case, impossible. Fortunately, there are backtracking

strategies that work in all but the most unforgiving domains. Before discussing these strategies,
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we present a few useful de�nitions.

De�nition 1 (transformation) We say action A transforms the world state from w to w0 (rep-

resented A: w!w0) whenever

1. A is executable in w and

2. If the world is in state w immediately prior to executing A, the world will be in state w0

immediately after executing A.

We say a sequence of actions A1, A2, : : : , An transforms the world state from w0 to wn (rep-

resented as A1, A2, : : : , An: w0!wn) if 9 w1, w2, : : : , wn�1, such that A1: w0!w1, A2: w1!w2,

: : : , Ai: wi�1!wi, : : : , An: wn�1!wn

De�nition 2 (inversion) An action A�1 is inversion of action A i� for any world states w, w0,

A: w!w0 ) A�1: w0!w.

Note it is not in general the case that if A�1 is the inversion of A, then A is the inversion

of A�1. For example, rm backup is the inversion of cp important.file backup, but rm backup

itself has no inversion (as many frustrated UNIX users have discovered).

Another important point is that any action Aobs that has only observational e�ects does not

change the state of the world w (Aobs: w!w). Therefore all such purely observational actions have

an inversion, namely the null action Anop. This has important implications to physical backtracking,

since we never need to worry about backtracking over observational actions. A possible concern

might be that while we can trivially return the world to its original state, we may not be able

to return the agent's knowledge about the world to its previous value. While that is true, it is

unimportant, since executing a purely observational action only increases the agent's knowledge

about the world, and having more knowledge about the world cannot make a previously attainable

goal unachievable.

De�nition 3 (reversible) An action A is reversible i� for any world states w, w0, A: w!w0 )

9 A1, A2, : : : An such that A1, A2, : : : , An: w
0!w.

If an action has an inversion, then it is trivially reversible, but the converse is false, since

De�nition 2 requires that the same inversion A�1 be applicable for all w, w0, whereas De�nition 3

only requires that for each w, w0 there be some sequence of actions that reachieves w0. For example,

cd /bin is reversible, but has no inversion, since the action required to restore the state depends

on what the current directory was before executing the cd. On the other hand, pushd /bin has an

inversion, namely popd. Note also that if the state of the world is unknown, it may be impossible

to determine the correct sequence of actions needed to restore the world to its prior state, even

though such a sequence theoretically exists.

Given the de�nitions above, there are three possible cases to consider in terms of their impact

on planning.

Strong Reversibility If all the actions considered in the course of planning have inversions, then

backtracking over execution poses no problems, since it is always possible when going from

any node of the search tree to any other node to execute the appropriate sequence of actions

to bring the world into the appropriate state. For example, if in plan px the actions executed

20



were Aa, Ab, and in plan py the action executed was Am, and the last plan visited was px,

then to safely visit plan py, we would �rst need to execute the sequence of actions A�1

b , A�1a ,

Am, where A
�1
a and A�1

b are the inversions of Aa and Ab, respectively.

Irreversibility If at any time during planning, an action is executed that is not reversible, then

planning could be incomplete, since it may be possible to enter a state from which there is

no way to satisfy the goal. A robot may fall into a pit, or a Softbot may delete an essential

�le, making a goal that was previously achievable now unattainable.

Weak Reversibility If not all the actions executed in the course of planning have inversions,

but no actions are irreversible, then it is still possible to backtrack over execution without

adding a source of incompleteness. This fact may not be immediately obvious, since as we

said, if we don't know what the state of the world was when a given plan was created, then

we may not be able to �nd the correct sequence of actions to return to that state. However,

it is su�cient to return the world to a state that is consistent with the plan, meaning the

conditions of causal links from A0, and the from e�ects of executed actions, actually hold in

the world. Doing so is clearly possible, since returning to the original state is possible, and

the original state is consistent with the plan. The fact that no actions are irreversible means

that any state reachable originally through re�ning this plan is reachable after backtracking,

though possibly by a di�erent path. For example, say the planner is backtracking from plan

px to py, and px involved the execution of cd newdir, but when py was created, the current

directory was olddir. Unless py had a commitment to being in olddir, doing another cd is

unnecessary. It may be the case that subsequent re�nements to py will result in a commitment

to be in olddir, newdir, or some other directory, but those can be dealt with as the need

arises.

4.3 Policies for Backtracking Over Execution

We are concerned here with the case of Weak Reversibility. Strong Reversibility is uncommon

in real-world domains, and trivial to handle. On the other hand, if actions are irreversible, then

contingent planning may be more appropriate than interleaved planning and execution. Given our

focus on Weak Reversibility, we cannot assume there is a single action sequence that will return

the world to some desired state. However, as discussed above, returning to the original state is not

necessary; it is su�cient to re-establish the invalidated conditions of the plan. A simple way of

doing so is to replan to satisfy those conditions.

However, this brings up some concerns. First of all, since the cost of planning is potentially

unbounded, the cost of re-establishing these conditions could be arbitrary, whereas the cost of

executing the inversion sequence is at worst linear in the number of actions in the plan. If no

inversion sequence exists, then we cannot hope to do better than to bear the cost of replanning. If

such a sequence does exist, then it can be used to guide the establishment decisions in replanning.

That way, the cost of replanning will never be signi�cantly greater than the cost of executing the

inversion sequence.

Another concern is that the planner might spend all its time re-establishing invalidated condi-

tions, and never actually make progress along any plan branch. This would happen if it decided to

backtrack while re-establishing conditions from the last backtrack point, e�ectively making back-

wards progress, and reconsidering the same (or equivalent) plans repeatedly. We might try to get

21



around this problem by not allowing the planner to backtrack over execution if other choices exist.

However, such a search strategy is incomplete, for the same reason that depth-�rst search is in-

complete. Looping can be avoided, however, without resorting to a depth-�rst execution strategy.

A planner backtracking over execution will only consider backtracking to plans that are on the

fringe of the search space. As long as we ensure that it pushes the fringe forward before backtrack-

ing again, we know it will make forward progress. We can ensure this condition through explicit

bookkeeping or, when using best-�rst search, by assigning appropriate penalties to plans requiring

physical backtracking.

One might imagine buying out of the physical backtracking problem entirely, by simply re-

planning from scratch whenever such backtracking would be required. This is the approach taken

by ipem [2]. It has the advantage that backtracking is simpler, but the disadvantage of doing

considerably more search. It is also vulnerable to the kind of looping described above, and the

approach described above to prevent looping would be useless. To see why that is, remember that

the planner backtracking over execution will only consider backtracking to plans that are on the

fringe of the search space, but a planner that always replans e�ectively has the entire search space

to choose from. There is no way to restrict it to a \fringe," because it has no memory of past

planning. Granted, it does retain knowledge gained from past planning, but unless that knowledge

includes facts such as \that solution path was a dead end," there is no way to avoid making the

same mistakes repeatedly.

5 Conclusions

5.1 Summary

Classical planners are hobbled by the CWA and an inability to sense or interact with the world.

Other incomplete information planners overcome these limitations at the expense of expressiveness.

By using LCW, xii overcomes the limitations of classical planners, while retaining their expressive

power. However, it does assume the information it has is correct, and that there are no exogenous

events.

The principal results presented in this paper are the xiil action language, which provides a way

of describing incomplete knowledge, sensory actions and information goals, and the xii algorithm,

which supports the xiil language and LCW knowledge, interleaves planning with execution, and

solves universally quanti�ed goals in the presence of incomplete information.

5.2 Related Work

xii is based on the ucpop algorithm [38]. It builds on ucpop by dealing with information goals

and e�ects, interleaving planning with execution, LCW, and substantial additions to the action

language. The algorithm we used for interleaving planning with execution closely follows ipem [2].

xii di�ers from ipem in that xii can represent actions that combine sensing and action, and can

represent information goals as distinct from satisfaction goals. ipem makes no such distinction, and

thus cannot plan for \look but don't touch" information goals. occam [26], and sage [22] can both

create plans to obtain new information, but unlike xii, they can do nothing else; both planners are

specialized to the problem of information gathering or database retrieval. occam derives signi�cant

computational speedup and representational compression from the assumption that actions don't
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change the world, and thus seems appropriate for domains in which that assumption is valid. It is

not clear whether sage, which is based on ucpop as is xii, gains similar advantage. xii, in contrast,

can integrate causational and observational actions in a clean way, and in addition, supports Local

Closed World reasoning, which neither sage nor occam support.

The xiil language is the synthesis and extension of uwl [14] and the subset of adl [36] supported

by ucpop. Our research has its roots in the socrates planner. Like xii, socrates utilized the

Softbot domain as its testbed, supported the uwl representation language and interleaved planning

with execution. In addition, socrates supported a restricted representation of LCW, which it used

to avoid many cases of redundant information gathering. Our advances over socrates include

the ability to satisfy universally quanti�ed goals, a more expressive LCW representation, and the

machinery for automatically generating LCW e�ects and for detecting threats to LCW links.

More broadly, our work is inspired by previous work which introduced and formalized the notion

of knowledge preconditions for plans and informative actions [29, 32, 10, 33, 34]. While we adopted

an approach that interleaves planning and execution [16, 35, 24], other researchers have investigated

contingent or probabilistic planning. Contingent planners [46, 43, 19, 40, 9, 41] circumvent the need

to interleave planning with execution by enumerating all possible courses of action and deferring

execution until every possible contingency has been planned for. While this strategy is appropriate

for safety-critical domains with irreversible actions, the exponential increase in planning time is

daunting.

Some planners encode uncertainty in terms of conditional probabilities [25, 9], or Markov De-

cision Processes [23, 7]. Our approach sacri�ces the elegance of a probabilistic framework for an

implemented system capable of tackling practical problems.

Robotics researchers have also addressed the problem of planning with actions whose e�ects are

uncertain, exploring combinations of sensory actions and compliant motion to gain information [27,

11, 4, 8]. Recent complaints about \Sensor abuse" [28, 30] suggest that the robotics community is

aware of the high cost of sensing and is interested in techniques for eliminating redundant sensing.

xii's search space can be understood in terms of Kambhampati's Universal Classical Plan-

ner (UCP) [21], which uni�es plan-space planning with forward-chaining and backward-chaining

planning. When xii works on open conditions or threats, it is following a version of the Re�ne-plan-

plan-space algorithm with bookkeeping constraints and con
ict resolution. When xii executes an

action, it is following the Re�ne-plan-forward-state-space algorithm, though xii actually executes

the action and obtains sensory information, whereas Kambhampati's algorithm only modi�es the

plan. Another di�erence is that, to preserve completeness, Kambhampati's algorithm considers

adding and \executing" all applicable new actions, whereas xii will only execute actions that were

previously added to the plan.

An approach to planning similar in spirit to xii's use of LCW is to count the number of relevant

ground propositions in the model, before inserting information-gathering actions into the plan, to

check whether the desired information is already known [44, 35]. However, this heuristic is only

e�ective when the number of sought-after facts is known in advance. LCW reasoning is more

general in that it can also deal with cases when the size of a set (e.g. the number of �les in a

directory) is unknown.
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5.3 Future Work

xii shares the plight of other expressive AI systems in being highly dependent on well-crafted

search control knowledge. We are investigating domain-independent search control strategies, and

a more intuitive language for supplying domain-dependent search control knowledge. We also hope

to apply speedup learning techniques to automatically acquire much of this knowledge. Learning

search control in the context of incomplete information and execution poses some interesting new

research questions.

One of the key restrictions of xii is that it assumes there are no exogenous events. We can par-

tially relax that assumption by associating expiration times with beliefs, so beliefs about rapidly

changing propositions don't persist, and by recovering from errors that result from incorrect in-

formation about action preconditions. However, these techniques are fairly primitive, and much

work remains to be done in learning appropriate expiration times and in revising beliefs when

assumptions are found to be valid.

A XIIL Action Language

The key to xii's expressiveness is the xiil language, which merges uwl with the subset of adl

supported by ucpop. Table 1 provides an EBNF representation of the xiil language. Some of the

less important details of xiil are omitted from the table and the following discussion, for the sake

of clarity. Below, we elaborate on some of the unique features of the language.

A.1 Variables and Types

xiil variables are considerably more complex than variables in ucpop and other planners. They

are always typed, as are constants. Additionally, variables may be designated as plan-time or run-

time, and may be universally or existentially quanti�ed, or parameters.9 Run-time variables are

variables whose values will not be known until an action is executed; plan-time variables are the

standard variables used in classical planners. Plan-time variables appearing as parameters of an

action schema must be bound before the action can be executed. Run-time variables that appear

as parameters are treated as existentially quanti�ed. Run-time variables may be bound or unbound

prior to execution, but if a run-time variable is bound, and sensing reveals the correct value to be

di�erent than the expected value, then the plan will be rejected. This is a departure from [14],

where run-time variables are treated as constants, and cannot be bound prior to execution.

Plan-time or run-time variables may appear in quanti�ed expressions, and will be labeled as

universally or existentially quanti�ed. In addition to a type, universally quanti�ed variables must

have a speci�ed universe, a conjunctive expression that designates the set of values over which the

variable ranges. The universe is used to compute LCW preconditions and e�ects, and to restrict the

universal base. Formally, the universe is equivalent to a precondition introduced by thewhen clause

of a universally quanti�ed e�ect, or to a material conditional (univ (x) ) goal(x)) in a universally

quanti�ed goal, but the universe can be used more e�ciently than can additional preconditions,

since it is restricted to conjunctions and since it is often unnecessary to explicitly subgoal on the

9Parameters facilitate a lifted representation, in which one action schema, such as MOVE(x, y), stands in for

many speci�c actions, such as MOVE(A, TABLE) In planners such as snlp, which don't support quanti�cation, all

variables in an action schema are parameters.
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action-schema ::= (defaction name ([parmlist])

[precond: GD]

effect: e�ect)

execute: function-symbol(arglist)

sense: frtvlistg := function-symbol(arglist)

e�ect ::= cause (literal) j observe (literal)

e�ect ::= e�ect ^ e�ect j (e�ect) j when (GD) e�ect

e�ect ::= 8 (uvarlist) e�ect j 9 (evarlist) e�ect

GD ::= satisfy (literal) j find-out (literal) j
hands-off (literal) j contemplate (literal) j

GD ::= GD ^ GD j GD _ GD j (GD) j :GD
GD ::= GD ) GD j vc = vc j vc 6= vc

GD ::= 8 (uvarlist) GD j 9 (gvarlist) GD

literal ::= predicate-symbol ([arglist]), [truth-value]

truth-value ::= T j F j U j var

vc ::= var j constant-symbol

var ::= ptvar j rtvar

ptvar ::= variable-symbol

rtvar ::= !variable-symbol

uvar ::= type-symbol (var) 2 scope

scope ::= predicate-symbol (arglist) j scope ^ scope

uvarlist ::= uvar | uvar, uvarlist

parmlist ::= var | var, parmlist

rtvlist ::= rtvar | rtvar, rtvlist

arglist ::= vc | vc, arglist

evarlist ::= type-symbol (rtvar) j type-symbol (rtvar), evarlist

gvarlist ::= type-symbol (ptvar) j type-symbol (ptvar), gvarlist

Table 1: EBNF speci�cation of xiil.

universe. A universe may be speci�ed as well for existentially quanti�ed variables, but it is not

required.

Variables, constants, and the parameters of predicates and action schemas, are all typed, em-

ploying a simple, tree-structured type system. Types are formally equivalent to unary predicates,

and are implemented as such in ucpop. xii treats types di�erently, using them to restrict options

during uni�cation, rather than explicitly subgoaling on them. Each type has a single parent type,

except for the root type, thing, which has no parent. In general, two variables are consistent if one

is an ancestor of the other in the inheritance tree. xii performs type inference and type-checking

during uni�cation and belief update. These operations are fast. In the worst case, they are linear

in the number of types, but given a bushy inheritance tree, they are logarithmic. In addition to

providing a useful mechanism for checking common errors in goals and action schemas, this type

system can substantially speed up planning, by cutting down on the number of e�ects that unify

with a given goal.
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A.2 Action Schemas

An action schema is a template for an action. Each schema de�nition starts with a name and a

parameter list. Every variable appearing in the schema must be declared either in the parameter

list, or within a quanti�er. An action is simply a copy of a schema, with all the variables replaced

with unique copies.

As Figure 1 illustrates, a xiil action schema also contains the following �elds:

precond The preconditions of the action. Preconditions consist of alits and codesignation constraints,

connected by conjunction, disjunction, and quanti�ers. The alits may have annotations

�nd-out or satisfy, introduced in section 2.3. There are other annotations, such as hands-

o� [14], which means the truth value of the literal is not to be modi�ed, and contemplate,

which means only the agent's beliefs about the literal are to be queried. Codesignation con-

straints are of the form x = y, or x 6= y, where x and y are variables or constants appearing

in the schema. Preconditions cannot contain run-time variables.

effect The e�ects, or postconditions, of the action. Postconditions consist of alits, connected by

conjunction and quanti�ers. Postconditions may themselves have preconditions, designated

by the keyword when. In this case, the postconditions are called conditional e�ects. Such

e�ects apply only when the associated precondition is true. The preconditions of e�ects are

of the same form as the preconditions of actions. The alits in an e�ect may have annotations

of cause or observe. When the observe annotation is used, the variables may be run-time.

execute This speci�es what the agent needs to do in order to realize the e�ects of the action. In

the case of ls, the agent must send the string "ls -a" to a UNIX shell, by means of the

procedure execute-unix-command.

sense This speci�es how the agent is to interpret any results it gets back from execution. The

values to the left of the := are the run-time variables in the action to be bound to values

after execution. All run-time variables must be listed. The function to the right of the :=

computes the bindings for the variables from the output returned after execution and any

additional arguments passed to the function. In the case of ls, the pathname of the current

directory is passed as an argument to ls-sense, in order to compute the pathnames of �les

in that directory.
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B Algorithm

Algorithm: xii(hA;O;B;L; Ei, G)

Until G = ; ^ E = ; ^ 8` 2 L ` not threatened, do one of

1. HandleGoal(A, O, B, L, G, D)

2. HandleThreats(O, B, L, G)

3. HandleExecution(A, O, B, L, E)

B.1 Open Goals

Procedure: HandleGoal(A, O, B, L, G, D)

if G 6= ; then pop <g, Scons, Context> from G and select case:

1. g = g1 ^ g2 ^ : : : ^ gn: Add all g1, g2, : : : , gn to G

2. g = g1 ^ g2 ^ : : : ^ gn: Nondeterministically add one of g1, g2, : : : , gn to G

3. otherwise: If Context j= g then g is trivially satis�ed.

Else nondeterministically choose

(a) Choose an action Sprod from D (new action), or from A (existing action), and an e�ect

of Sprod, e, such that MGU(e, g) 6=?. If selecting a new action Sprod, add Sprod to A.

Add new link Sprod
g
!Scons to L, Sprod � Scons to O, MGU(e, g) to B. If Sprod is new,

add preconditions of Sprod to G. If e is conditional, add its precondition to G.

(b) if g = (8 x 2 scope(x) P(x)):

� Support universal base: Add <g, Scons, Context> back to G, tagged to WAIT.

Add <LCW(scope (x) ^ Context), Scons, ;> to G

� Expand universal goal: if g tagged to WAIT and LCW obtained, expand goal by

replacing universal variable with each instance in the universal base that is consistent

with Context.

(c) Partition:10 if g = (8 x 2 scope(x) P(x)):

Nondeterministically choose some expression �.

Add <g, Scons, Context ^ �> to G.

Add <g, Scons, Context ^ :�> to G.

B.2 Threats

Procedure: HandleThreats(O, B, L, G)

if ` 2 L is threatened by Sthreatthen either

1. Promote: Add Scons � Sthreat to O.

2. Demote: Add Sthreat � Sprod to O.

3. Confront: If threatening e�ect has a precondition, add its negation to G.

10The choice of the partition, � is obviously crucial to avoid arbitrary blowup of the search space. Fortunately, the

number of viable candidates for partitioning is generally small, and can be obtained by a search through the set of 8

e�ects that partially satisfy the goal.
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4. Enlarge LCW.

5. Shrink LCW.

6. Protect forall.

B.3 Execution

Procedure: HandleExecution(A, O, B, L, E)

if AE 2 A is executable and E(AE) = unexecuted then execute it. AE is executable if:

� All preconditions of AE are satis�ed

� All actions necessarily before AE have been executed

� No pending action has an e�ect that clobbers any e�ect of AE .

� AE does not threaten any links

� All parameters are bound.

To execute AE:

� Add AljAE to O, where Al is the last executed action in the plan, or A0, if no actions have

been executed.

� Execute the procedure associated with the action

� Set E(AE) = executed

� Update the model

� Update the plan with e�ects asserted in model.

� If execution fails or bindings inconsistent, then backtrack.
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